Quantum computing and a unified approach to fast unitary transforms

نویسندگان

  • Sos S. Agaian
  • Andreas Klappenecker
چکیده

A quantum computer directly manipulates information stored in the state of quantum mechanical systems. The available operations have many attractive features but also underly severe restrictions, which complicate the design of quantum algorithms. We present a divide-and-conquer approach to the design of various quantum algorithms. The class of algorithm includes many transforms which are well-known in classical signal processing applications. We show how fast quantum algorithms can be derived for the discrete Fourier transform, the Walsh-Hadamard transform, the Slant transform, and the Hartley transform. All these algorithms use at most O(log N) operations to transform a state vector of a quantum computer of length N .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Quantum Transforms

Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform...

متن کامل

Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits

The quantum Fourier transform (QFT), a quantum analog of the classical Fourier transform, has been shown to be a powerful tool in developing quantum algorithms. However, in classical computing there is another class of unitary transforms, the wavelet transforms, which are every bit as useful as the Fourier transform. Wavelet transforms are used to expose the multi-scale structure of a signal an...

متن کامل

Quantum fast Fourier transform using multilevel atoms

We propose an implementation of the quantum fast Fourier transform algorithm in an entangled system of multilevel atoms. The Fourier transform occurs naturally in the unitary time evolution of energy eigenstates and is used to de®ne an alternative wave-packet basis for quantum information in the atom. A change of basis from energy levels to wave packets amounts to a discrete quantum Fourier tra...

متن کامل

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

متن کامل

Quantum Software Reusability

The design of efficient quantum circuits is an important issue in quantum computing. It is in general a formidable task to find a highly optimized quantum circuit for a given unitary matrix. We propose a quantum circuit design method that has the following unique feature: It allows to construct efficient quantum circuits in a systematic way by reusing and combining a set of highly optimized qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002